
Photobiomodulation in the Brain

Low-Level Laser (Light) Therapy in Neurology and Neuroscience

Edited by Michael R. Hamblin and Ying-Ying <u>Huang</u>

Photobiomodulation in the Brain

Low-Level Laser (Light) Therapy in Neurology and Neuroscience

This page intentionally left blank

Photobiomodulation in the Brain

Low-Level Laser (Light) Therapy in Neurology and Neuroscience

Edited by

Michael R. Hamblin

Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States Department of Dermatology, Harvard Medical School, Boston, MA, United States

Ying-Ying Huang

Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States Department of Dermatology, Harvard Medical School, Boston, MA, United States

ACADEMIC PRESS

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2019 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-815305-5

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Nikki Levy Acquisition Editor: Natalie Farra Editorial Project Manager: Pat Gonzalez Production Project Manager: Sruthi Satheesh Cover Designer: Christian Bilbow

Typeset by MPS Limited, Chennai, India

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Dedication

To the love of my life, my beautiful wife, Angela Michael R. Hamblin

To Sophie and Ryan, you have always been great sources of inspiration, joy, and pride Ying-Ying Huang This page intentionally left blank

Contents

	of Co face	ontributors	xix xxv
	rt I sic	considerations and in vitro	1
1.	an	otobiomodulation therapy d the brain: an innovative tool • therapy and discovery	3
	Pra	veen R. Arany	
	1.1	Introduction 1.1.1 Beyond the structure-function	3
		architecture of the human brain 1.1.2 A bottom-up approach to brain	3
		neurosciences 1.1.3 Modulating the "brain black box"	4
	Ref	with light erences	5 6
2.		eoretical neuroscience rcelo Victor Pires de Sousa,	9
	Mai	rucia Chacur, Daniel Oliveira Martins I Carlo Rondinoni	
	2.1	Molecular and cellular	
		neuroscience2.1.1 History of neuroscience discovery over the decades	9 9
		2.1.2 Molecular techniques in neuroscience research	10
	2.2		
	2.3	neuroscience Approaches to simulations and	11
		computational neuroscience	11
		2.3.1 Neural function simulation	12
	2.4	Cognition and behavior	13
	2.5	Neural treatment simulation	16
	Ref	erences	17

3.	Pho	tobiomodulation of cultured				
	prin	primary neurons: role of				
	cytochrome c oxidase					
	, Margaret Wong-Riley and Huan Ling Liang					
	3.1 Introduction					
	3.2	Cytochrome c oxidase: a biological				
		mediator of photobiomodulation	21			
	3.3	Effect of photobiomodulaton				
		on primary neurons exposed to				
		tetrodotoxin	22			
	3.4	Equilibrium constants of azide and				
		cyanide with cytochrome c oxidase	23			
	3.5	Effects of photobiomodulation at				
		different wavelengths	24			
	3.6	Optimal regimen of photobiomodulation				
		via light-emitting diode for cultured				
		neurons exposed to cyanide	26			
	3.7	Photobiomodulation pretreatment				
		has added benefits for neurons				
		exposed to cyanide	28			
	3.8					
		photobiomodulation on primary				
		neurons exposed to MPP ⁺ or				
		rotenone	29			
	3.9	Pretreatment with photobiomodulation				
		is beneficial for neurons exposed				
		to MPP ⁺ or rotenone	31			
	3.10	Conclusions	32			
	Ackn	owledgments	32			
	Refe	rences	32			
4.	Pho	tobiomodulation on cultured				
	cortical neurons					
			35			
	Ying-Ying Huang and Michael R. Hamblin					

4	4.1	Introduction	35
4	4.2	Dose response in cultured cortical	
		neurons	36
4	4.3	Oxidative stress in cultured cortical	
		neurons	38

4.4 Excitotoxicity in cultured cortical neurons	41
Conclusion	45
References	46

5. Safety and penetration of light into the brain

Erica B. Wang, Ramanjot Kaur, Manuel Fierro, Evan Austin, Linda Ramball Jones and Jared Jagdeo

5.1	Introd	luction	49
5.2	Safety	,	49
	5.2.1	Animal studies	49
	5.2.2	Clinical studies	51
	5.2.3	NeuroThera Effectiveness and	
		Safety Trial clinical trials	51
5.3	Light	penetration into the brain	51
5.4	Mech	anism of action	52
5.5	Penet	ration depth	53
5.6	Optic	al properties of tissue	54
	5.6.1	Light-tissue interactions	54
	5.6.2	Melanin	54
		Water	55
		Hemoglobin	55
		Optical window	56
5.7		prospinal fluid	57
		Gray and white brain matter	57
5.8	Wave	0	57
	5.8.1	Animal studies	58
		Human studies	58
5.9		anatomy	59
		Animal studies	59
		Human studies	59
		Monte Carlo modeling	59
	Irradia		62
	Cohe		62
	Pulsin	•	62
		storage and processing	63
	Concl	usion	63
References			64
Further reading			66

6. Near-infrared photonic energy penetration—principles and practice

Theodore A. Henderson and Larry D. Morries

6.1	Introd	luction	67
	6.1.1	Understanding near-infrared light	67
6.2	Light	interactions with tissue	70
	6.2.1	Reflection and refraction	70
	6.2.2	Scattering	71

	6.2.3	Absorption	72
	6.2.4	Penetration	74
	6.2.5	Speckling	75
6.3	Infrar	ed light—on a journey to the brain	76
	6.3.1	Penetration of skin	76
	6.3.2	Penetration of skull	78
	6.3.3	Penetration of heterogeneous tissues	79
	6.3.4	A hairy problem	82
	6.3.5	Effectively treating the brain	83
6.4	Altern	native hypotheses to direct	
	near-i	infrared light energy effects	83
6.5	Concl	usion	85
Acknowledgments			
References			86

	t sources and dosimetry for the ain and whole body	89	
Ja	James D. Carroll		
7	1 Dose	89	
7	2 Irradiation parameters: wavelength (nm)	89	
7	3 Penetration	90	
7	4 Power Watts (W)	90	
7	5 Beam spot size (cm ²)	91	
7	6 Irradiance (W/cm ²)	91	
7	7 Pulses	91	
7	8 Coherence	92	
7	9 Time, energy, and fluence	92	
7.	0 Fluence (energy density) (J/cm ²)	93	
	1 Irradiation time (seconds)	93	
7.	2 Number of treatments and treatment		
	intervals (hours, days, or weeks)	93	
7.	3 Devices	94	
R	erences	94	

8.	Mechanisms of photobiomodulation in the brain			97
	Michael R. Hamblin			
	8.1 8.2	Introdu Molecu	uction ular mechanisms of	97
		photok	piomodulation	97
		8.2.1	Mitochondria and cytochrome c	
			oxidase	97
		8.2.2	Opsins, flavins, and cryptochromes	99
		8.2.3	Light-gated ion channels	99
		8.2.4	Water as a chromophore	100
	8.3	Mecha	nisms of photobiomodulation	
		applied	d to the brain	100
		8.3.1	Metabolism	101
		8.3.2	Blood flow	101
		8.3.3	Neuroprotection	101

	8.3.4	Oxidative stress	102
	8.3.5	Antiinflammatory effects	102
	8.3.6	Neurogenesis	103
	8.3.7	Synaptogenesis	104
	8.3.8	Stem cells	104
	8.3.9	Preconditioning	105
	8.3.10	Systemic effects	105
	8.3.11	Laser acupuncture	105
8.4	Conclu	sion	106
References			106

Part II

9.		nscranial photobiomodulation stroke in animal models	113
	Luis	De Taboada and Michael R. Hamblin	
	9.1 9.2	Introduction Animal models of stroke	113 115
	9.2	9.2.1 Middle cerebral artery occlusion9.2.2 Rabbit small clot embolic stroke	115
		model	116
	9.3	9.2.3 Photothrombotic stroke models Photobiomodulation for ischemic	116
	9.5	stroke in MCAO models	117
	9.4	Photobiomodulation for ischemic	
		stroke using the RSCEM model	118
	9.5	Photobiomodulation for ischemic	
		stroke in photothrombotic model	119
	9.6	Conclusion erences	121 121
	Kele	erences	121
10.		otobiomodulation in otothrombotic stroke	125
		elei Tucker, Luodan Yang, Yong Li and Inguang Zhang	
	Refe	erences	136
11.	neu har	note photobiomodulation as a proprotective intervention— nessing the indirect effects of ptobiomodulation	139
	Ji Ye	e Gordon, Boaz Kim, Claudia Petrucco, on Kim, Patrick Benson, Jonathan Stone Daniel M. Johnstone	
	11. 11.		139

photobiomodulation

11.3	Alternative photobiomodulation	
	treatment modalities	140
	11.3.1 Intracranial photobiomodulation	140
	11.3.2 Intranasal photobiomodulation	141
11.4	Introducing "remote	
	photobiomodulation"	141
11.5	Discovering the indirect effects	
	of photobiomodulation	142
11.6	The effects of photobiomodulation	
	on stem cells	144
11.7		
	as a neuroprotective intervention	145
	11.7.1 Parkinson's disease	145
	11.7.2 Alzheimer's disease	146
	11.7.3 Retinopathy	146
11.8	The precedent: remote ischemic	
	conditioning	147
11.9	Peripheral tissue targets for remote	
	photobiomodulation-induced	
	neuroprotection	148
11.10	Mechanisms underlying remote	
	photobiomodulation-induced	
	protection	148
	11.10.1 Circulating cellular mediators	148
	11.10.2 Circulating molecular	
	mediators	149
	11.10.3 Modulation of the microbiome	149
	11.10.4 Neurogenic signaling	149
11.11	Conclusion	150
Refere	ences	150

12. Photobiomodulation for traumatic
brain injury in mouse models155

Michael R. Hamblin

12.1	Introdu	ction	155
12.2	Studies	from other laboratories	155
12.3	Studies	from the Hamblin laboratory	156
	12.3.1	Closed-head traumatic brain	
		injury study	156
	12.3.2	Pulsed versus continuous wave	
		photobiomodulation for traumatic	
		brain injury	156
	12.3.3	Treatment repetition study	157
	12.3.4	Photobiomodulation increases	
		neurogenesis and neuroprogenitor	
		cells in traumatic brain injury	
		mice	159
	12.3.5	Photobiomodulation increases	
		BDNF and synaptogenesis in	
		traumatic brain injury mice	161
	12.3.6	The solution to the problem	
		of 14 daily photobiomodulation	
		treatments	163

12.4 Conclusion 165 166 References

169

13.	Photobiomodulation and
	mitochondria for traumatic brain
	injury in mouse models

Mei X. Wu and Michael R. Hamblin

13.1	Introduction	169
13.2	IEX-1 in traumatic brain injury	169
13.3	IEX-1 KO mice fail to fully recover	
	from mild traumatic brain injury	170
13.4	Histological alteration in IEX-1 KO	
	mice after mild traumatic brain injury	171
13.5	Inflammatory responses after mild	
	traumatic brain injury	173
13.6	Transcranial photobiomodulation	
	for traumatic brain injury in IEX-1	
	Knockout Mice	173
13.7	Combination of photobiomodulation	
	and metabolic modulation	177
13.8	Photobiomodulation assists neurons	
	to survive hypoxia in vitro	178
13.9	Photobiomodulation suppresses	
	apoptosis induced by hypoxia	178
13.10	Hypoxia accelerates, but	
	photobiomodulation protects against	
	secondary brain injury	178
13.11	Mitochondrial functions are additively	
	improved by the combination of	
	photobiomodulation with lactate or	
	pyruvate	182
13.12		
	pyruvate together fully protect the	
	hippocampal tissue and its function	183
13.13	Conclusion	185
Refere	ences	185

14.	Photo	biomod	lulat	ion	for c	lepressi	ion	
	in anir	nal moo	dels			-	18	9

Farzad Salehpour, Javad Mahmoudi, Saeed Sadigh-Eteghad and Paolo Cassano

14.1	Introdu	uction	189
14.2	Major (depressive disorder	189
	14.2.1	The extent of the problem	189
	14.2.2	Pathophysiology of major	
		depressive disorder	189
	14.2.3	Animal models of depression	
		and photobiomodulation studies	192
	14.2.4	Behavioral tests used in depression	n
		and photobiomodulation studies	193

	14.3	Photob	iomodulation therapy	194
		14.3.1	Introduction to	
			photobiomodulation therapy	194
		14.3.2	Mechanisms of	
			photobiomodulation therapy	194
		14.3.3	Translational photobiomodulation	
			studies in depression animal	
			models	197
	14.4	Conclu	sions and future outlook	199
	Refer	ences		199
15	Tran	ccrani	al photobiomodulation	
15.			eimer's disease in	
			protein precursor	
				207
	tran	sgenic	mice	207
	Luis I	De Tabo	ada and Michael R. Hamblin	
	15.1	Introdu	iction	207
	15.2	Study d	lesign	208
	15.3	Transcr	anial photobiomodulation	
			es cognitive performance as	
		measur	ed by Morris Water Maze	208
	15.4	Transcr	anial photobiomodulation lowers	
		the amy	yloid load in brain and reduces	
		levels o	of A β peptides in brain,	
		cerebro	ospinal fluid, and plasma	209
	15.5	Transcr	anial photobiomodulation	
		reduces	s inflammation in the brain	209
	15.6	Transcr	anial photobiomodulation	
		improv	es mitochondrial function	
		in the b	orain	210
	15.7	Discuss	ion	210
	15.8	Conclu	sion	211
	Refer	ences		211

16. Low-level laser therapy to the bor marrow: a new therapeutic appro to neurodegenerative diseases	
Amir Oron and Uri Oron	
Acknowledgment	216
References	216

17. The experimental evidence for photobiomodulation-induced cellular and behavioral changes in animal models of Parkinson's disease: a template for translation to patients 219

Nabil El Massri and John Mitrofanis

17.1 Introduction 219

17.2	Parkinson's disease and animal models	219
17.3	Photobiomodulation	221
17.4	Neuroprotection	223
17.5	Gliosis	225
17.6	Growth factors	226
17.7	Functional activity	226
17.8	Behavior	226
17.9	Translation to patients	227
17.10	Conclusion	228
References		228
Further reading		231

18.	Effects of near-infrared low-level	
	laser stimulation on neuronal	
	excitability	233

Ljubica M. Konstantinović and Saša R. Filipović

18.1	Introductory remarks		
18.2	Neuror	nal excitability—experimental	
	results		234
	18.2.1	Effects on peripheral nerves	234
	18.2.2	Effects on brain	234
18.3	Propos	ed mechanisms	236
18.4	Future	directions	239
Ackn	owledgr	nent	239
Refe	ences		239

19.	Photobiomodulation for multiple	
	sclerosis in animal models	

M.A. Tolentino and J.A. Lyons

- 19.1 Introduction
 19.2 Experimental autoimmune encephalomyelitis and multiple sclerosis
 241
 19.3 Photobiomodulation therapy for the treatment of experimental autoimmune encephalomyelitis/ multiple sclerosis
 244
 19.4 Conclusion and future directions
 249
- 19.4 Conclusion and future directions249References249

20. Hepatic encephalopathy and photobiomodulation: experimental models and clinical features 253

Natalia Arias, Juan Díaz González, Alberto Martín Pernía and Jorge L. Arias

20.1Introduction25320.2What is hepatic encephalopathy?255

20.2.1The contribution of ammonia25520.2.2The contribution of oxidative/
nitrosative stress25820.3Photobiomodulation for hepatic
encephalopathy259Acknowledgment260References260Further reading263

21. Photobiomodulation in animal models of retinal injury and disease 265

Janis T. Eells

241

21.1	Introduction	265
21.2	Methanol intoxication	267
21.3	Bright light-induced retinal damage	267
21.4	Diabetic retinopathy	269
21.5	Retinitis pigmentosa	269
21.6	Aging and age-related macular	
	degeneration	269
21.7	Retinopathy of prematurity	270
21.8	Optic nerve injury	270
21.9	Glaucoma	271
21.10	Conclusion and future directions	271
Ackno	owledgment	271
Refere	ences	271
Furthe	er reading	273
	-	

22.	ther dosi	apy fo	al photobiomodulation r pain: animal models, mechanisms, es	275
	Cord		or Pires de Sousa, Nathali to and Elisabeth imura	
	22.1	Introdu	iction	275
	22.2	Pain—a	a major problem for human	
		health		276
	22.3	Transcr	anial photobiomodulation	
		therapy	/—a multidisciplinar solution	
		for pair	1	277
	22.4	Photon	euromodulation: dosimetry,	
		mechai	nisms, and therapeutics in	
		translat	ional research	277
			Dosimetry	277
		22.4.2	Mechanisms	279
		22.4.3	Therapeutic effects	281
		22.4.4	Irradiation of nervous system:	
			peripheral versus central	281

22.5	Photoneuromodulation of glutamate			
	receptors, prostatic acid phophatase			
	and ad	enosine triphosphate	283	
	22.5.1	Behavioral evaluation of pain	283	
	22.5.2	Neurochemical and		
		neurobiological evidences		
		of analgesic effect	283	
22.6	Future	directions of transcranial		
		iomodulation therapy for pain	284	
22.7	Conclu	sion	285	
References			285	

Part IIICinical studies287

23.	trans lase	slating thera	nge of effectively transcranial near-infrared py to treat acute ischemic	2
	strol			289
	Paul /	A. Lapch	nak	
	23.1 23.2	Neuro trial (N	Fhera effectiveness and safety EST): from transcranial laser	289
		• •	efficacy to NEST futility	289
		23.2.1	NeuroThera effectiveness and	200
		23.2.2	safety trial-1 NeuroThera effectiveness and	290
		23.2.2	safety trial-2	291
		23.2.3	NeuroThera effectiveness and	291
		29.2.9	safety trial-3	292
	23.3	Transla	tional stroke research in the	
			c stroke rabbit model	293
		23.3.1	Preclinical efficacy	293
	23.4		vent wrong in NeuroThera	
		effectiv	eness and safety trials?	294
	23.5	transcr	sions and commentary: should anial laser therapy be further ered as an approach to treat	
		stroke?	••	294
	Refer	ences		295
24.	trau	matic	photobiomodulation on brain injury: proposed sessment	299
	Sherr	y Fox ar	nd Victoria Campbell	
	24.1 24.2		luction ition and statistics—traumatic	299

24.2	Definition and statistics—traumatic	
	brain injury	300

24.3	Developmental aspects	301
24.4	Physiological components	301
24.5	Psychological manifestations	302
24.6	Sociological implications	302
24.7	Causation	302
24.8	Treatment approaches	303
24.9	Most common treatments	
	recommended	303
24.10	Results	304
24.11	Discussion	304
24.12	Future clinical trials for the treatment	
	of traumatic brain injury	305
24.13	Conclusion	305
References		306

25. Transcranial, red/near-infrared	
light-emitting diode therapy for	
chronic traumatic brain injury and	
poststroke aphasia: clinical studies	309

Margaret A. Naeser, Paula I. Martin, Michael D. Ho, Maxine H. Krengel, Yelena Bogdanova, Jeffrey A. Knight, Andrea Fedoruk, Michael R. Hamblin and Bang-Bon Koo

25.1	Traumati	ic brain injury	309
	25.1.1	Introduction to traumatic brain	
		injury	309
	25.1.2	Sports-related traumatic brain	
		injury	309
	25.1.3	Traumatic brain injury in	
		soldiers and veterans	309
	25.1.4	Diffuse axonal injury and white	
		matter abnormalities on magnetic	2
		resonance imaging scans	310
	25.1.5	Development of	
		neurodegenerative disease	
		posttraumatic brain injury	310
	25.1.6	Functional brain imaging in	
		traumatic brain injury	310
	25.1.7	Resting-state, functional-	
		connectivity magenetic	
		resonance imaging	
		in traumatic brain injury	310
	25.1.8	Cognitive dysfunction in	
		traumatic brain injury	311
	25.1.9	Sleep disturbances in traumatic	
		brain injury	311
	25.1.10	Pharmacologic treatments	
		for traumatic brain injury	311
	25.1.11	Cognitive rehabilitation therapies	
		for traumatic brain injury	312

25.2		iomodulation for chronic	
	trauma	tic brain injury	312
	25.2.1	Transcranial light-emitting diode	
		treatment performed at home, to	
		improve cognition in chronic, mile	
		traumatic brain injury—case	
		reports	312
	25.2.2	Transcranial light-emitting diode	
		treatment to improve cognition in	
		chronic, mild traumatic brain	
		injury—open protocol, group	212
	2522	study	313
25.3	25.2.3		313
25.5		g current studies on iomodulation for traumatic brain	
	injury	iomodulation for tradmatic brain	314
	25.3.1	Transcranial light-emitting diode	514
	25.5.1	treatment to improve cognition	
		and sleep in mild traumatic brain	
		injury	314
	25.3.2	Intranasal (only) light-emitting	
		diode treatment to improve	
		cognition and sleep	316
25.4	Discuss	ion, photobiomodulation for	
	trauma	tic brain injury	317
	25.4.1	Executive function, and	
		relationship to resting-state,	
		functional-connectivity magenetic	
		resonance imaging networks	
		(default mode network and	
	05.40	salience network)	317
	25.4.2	Specific transcranial light-emitting	
		diode placements may affect	
		specific parts of the salience network and default mode	
		network in traumatic brain injury	
		cases	318
	25.4.3	Verbal learning and memory,	510
	23.1.5	and relationship to resting-state,	
		functional-connectivity	
		magenetic resonance imaging	
		(central executive network)	318
	25.4.4	Specific transcranial light-emitting	
		diode placements may affect	
		specific parts of the central	
		executive network in traumatic	
		brain injury cases	319
	25.4.5	Depression	319
	25.4.6	Posttraumatic stress disorder	
		relationship to intrinsic networks,	
		default mode network and	210
		salience network	319

	25.4.7	Weak connections between	
		cortical nodes within intrinsic	
		neural networks	320
	25.4.8	Mechanisms and cellular effects,	
		post-red/near-infrared transcranial	
		light-emitting diode	320
25.5	Photob	iomodulation to improve	
		ge in chronic aphasia, due to left	
		here stroke	321
	25.5.1	Stroke-aphasia	321
	25.5.2	Importance of specific	
		light-emitting diode placement	
		areas on the scalp to treat aphasia,	
		in chronic stroke	322
	25.5.3	Bilateral transcranial light-emitting	
		diode treatment method	322
	25.5.4	Left hemisphere only, transcranial	
		light-emitting diode treatment	
		method	322
	25.5.5	Results	323
	25.5.6	Photobiomodulation to treat	
		primary progressive aphasia,	
		a neurodegenerative disease	323
25.6	Photob	iomodulation for possible	
		traumatic encephalopathy	324
25.7	Conclu	• • •	326
Refe	rences		326

26. Photobiomodulation as a potential therapeutic strategy for improving cognitive and functional outcomes in traumatic brain injury 333

Thomas J. Covey, David W. Shucard, Melissa Meynadasy, Thomas Mang and Praveen R. Arany

26.1 Introduction 333 26.2 Neuropathology of traumatic brain injury 335 26.3 Putative targets of photobiomodulation 336 therapy in traumatic brain injury 26.4 Treatment parameters and biological targets of photobiomodulation in animal models of traumatic brain injury 336 26.5 Effects of photobiomodulation on cognitive performance in animal models of traumatic brain injury 343 26.6 Enhancement of cognitive performance in healthy individuals with photobiomodulation treatment 345

26.7	Effects of photobiomodulation therapy	
	on cognitive outcomes in traumatic	
	brain injury patients	351
26.8	Summary and future directions	354
26.9	Conclusion	356
References		357

27. Advanced neuroimaging methods for assessment of low-level light therapy

Suk-tak Chan, Maria Gabriela Longo, Eva-Maria Ratai and Rajiv Gupta

27.1	Introduction	363
27.2	Known mechanisms of light therapy	363
27.3	Preclinical evidence for light therapy	364
27.4	Clinical evidence of light therapy	
	efficacy	364
27.5	Evidence for transcranial delivery	
	of light	365
27.6	Neuroimaging methods	365
	27.6.1 Computed tomography	365
	27.6.2 Magnetic resonance imaging	365
27.7	Structural imaging	367
27.8	Diffusion imaging	368
27.9	Perfusion imaging	369
27.10	Resting state functional connectivity	
	imaging	370
27.11	Functional imaging using hypercapnic	
	challenges	370
27.12	Magnetic resonance spectroscopy	371
Fundir	ng	371
Refere	ences	371

28. Treatment of traumatic brain injury with near-infrared light377

Larry D. Morries and Theodore A. Henderson

28.1	Backgr	ound	377
	28.1.1	Definition	377
	28.1.2	Incidence	378
	28.1.3	Vulnerable populations	378
	28.1.4	Symptoms	379
28.2	Diagno	ostic workup	379
	28.2.1	Neurological and physical	
		evaluation	379
	28.2.2	Balance testing	381
	28.2.3	Dysautonomia	382
	28.2.4	Cervicogenic headaches	382
	28.2.5	Questionnaires and cognitive	
		testing	382
	28.2.6	Neuroimaging	384

28.3	Treatm	ent of traumatic brain injury	,
	with ne	ear-infrared light therapy	386
	28.3.1	Overview	386
	28.3.2	Review of the literature	387
28.4	Conclu	ision	394
Ackn	Acknowledgment		
Refe	rences		395

29. Photobiomodulation: a novel
approach to treating Alzheimer's
disease401

Lew Lim, Genane Loheswaran, Reza Zomorrodi, Anita Saltmarche and Linda Chao

29.1	Introduction	401
29.2	Pharmacotherapies for Alzheimer's	
	disease	401
29.3	Pathophysiology of Alzheimer's	
	disease	402
	29.3.1 Amyloid cascade hypothesis	402
	29.3.2 Neurofibrillary tangles	402
	29.3.3 Other protein targets	402
29.4	The odds against a monotherapy	402
29.5	Mitochondrial cascade hypothesis	
	of Alzheimer's disease	403
29.6	Photobiomodulation and mitochondria	I
	function	403
29.7	Photobiomodulation in animal	
	models of Alzheimer's disease	404
29.8	Human clinical studies of	
	photobiomodulation on dementia	
	and Alzheimer's	404
	29.8.1 Saltmarche et al. (2017)	405
	29.8.2 Zomorrodi et al. (2017)	405
	29.8.3 Ongoing study—Chao (2018)	406
	29.8.4 Discussion on the clinical	
	studies	409
29.9	Key parameters	410
	29.9.1 The default mode network	411
	29.9.2 Pulse rate of 40 Hz	412
29.10	Proving light penetration through	
	electroencephalography measures	412
29.11	Electroencephalography as a tool	
	for developing Alzheimer's disease	
	therapies	412
29.12	Pulsed photobiomodulation as	
00.40	a potential treatment modality	413
29.13	The future of photobiomodulation	
	as a treatment for Alzheimer's	140
D (disease	413
Refere	ences	413

30.	diag	troencephalography as the gnostic adjunct to transcranial tobiomodulation	419	
		Zomorrodi, Genane Loheswaran Lew Lim		
	30.1	Introduction	419	
	30.2	Electroencephalography	419	
	30.3	Brain waves	420	
		30.3.1 Delta oscillations	420	
		30.3.2 Theta oscillations	420	
		30.3.3 Alpha oscillations	420	
		30.3.4 Beta oscillations	421	
		30.3.5 Gamma oscillations	421	
	30.4	Photobiomodulation as a new		
		noninvasive brain stimulation method	421	
	30.5	The causal link between		
		photobiomodulation and neural		
		oscillations	422	
		30.5.1 Maintaining homeostasis	422	
		30.5.2 Calcium signaling	422	
	30.6	Evidence for transcranial		
		photobiomodulation influences on		
		brain oscillations	423	
	30.7	The potential use of		
		electroencephalography with		
		photobiomodulation for brain		
		disorders	424	
		Discussion and conclusion	424	
	References 4			

31. Can photobiomodulation enhance brain function in older adults? 427

Agnes S. Chan, Michael K. Yeung and Tsz L. Lee

31.1	Frontal	lobe deterioration and normal	
	human	aging	427
	31.1.1	Structural and functional	
		deteriorations of the frontal	
		lobe in normal human aging	427
	31.1.2	Cognitive declines in frontal	
		lobe functioning in normal	
		human aging	430
	31.1.3	Conventional interventions for	
		improving frontal lobe functioning	,
		in normal older adults	434
31.2	Photob	iomodulation and	
	neuroe	nhancement	435
	31.2.1	Mechanisms of action of	
		photobiomodulation	435
	31.2.2	Photobiomodulation for enhancing	3
		brain functions in humans	435

31.3 Photobiomodulation for normal older	
adults: a potential intervention for	
the aging brain	440
Acknowledgment	440
Conflict of interest	441
References	441
Further reading	446

32. Noninvasive neurotherapeutic treatment of neurodegeneration: integrating photobiomodulation and neurofeedback training Marvin H. Berman, Trent Nichols, Jason Huang and Damir Nizamutdinov

-	0	
32.1	Photobiomodulation and neurotherapy	
	introduction	447
32.2	Pathophysiology of	
	neurodegeneration	448
32.3	Photobiomodulation therapy	450
32.4	Near infrared photobiomodulation	
	decreases synaptic vulnerability to A $\!eta$	451
32.5	Early human clinical trials	452
32.6	Digit span measures	454
32.7	Neuropsychological testing results	454
32.8	Treatment of neurodegeneration	
	with directed energy	458
32.9	Near infrared spectroscopy	
	assessment of Alzheimer's	458
32.10	Conclusion	459
Refere	ences	460
Further reading		

33.	ther	ару: о	al photobiomodulation bservations from four t disorder patients	463
			amilton, David Hamilton, son and John Mitrofanis	
	33.1	Introdu	iction	463
	33.2	Case d	escriptions	463
		33.2.1	Progressive supranuclear palsy:	
			Patient FH	463
		33.2.2	Parkinson's disease: Patient BS	466
		33.2.3	Parkinson's disease: Patient PN	467
		33.2.4	Parkinson's disease: Patient MH	468
	33.3	Discuss	sion	469
	33.4	Conclu	sion	472
	Ackn	owledgi	ment	472
	Refe	rences		472

34.	Cer imp	ebral blood flow in the elderly: act of photobiomodulation	473
	Franc Danie	so Shiguemi Inoue Salgado, sisco José Cidral-Filho, el Fernandes Martins, Ivo I. Kerppers Rodolfo Borges Parreira	
	34.1	Introduction	473
		Brain hemodynamics in the elderly Effect of photobiomodulation of the	473
		brain in the elderly	475
		rences	475
	Furth	er reading	477
35.	for ı diso	scranial photobiomodulation major depressive and anxiety rders and for posttraumatic ss disorder	479
	Marc	o Antonio Caldieraro and Paolo Cassano	
	35.1	The potential of transcranial photobiomodulation for the anxious and depressed	479
	35.2	•	775
		major depressive disorder	480
	35.3	Transcranial photobiomodulation for anxiety disorders and for posttraumatic	
		stress disorder	481
	35.4		
	a = =	photobiomodulation	484
	35.5	Dosing transcranial photobiomodulation for mood and anxiety disorders	
	35.6	Conclusion	484 485
	00.0	rences	485
	Refer		105
36.		on at a distance: laser	
	acu	ouncture and the brain	489
	Nich	olas Alexander Wise	
	36.1	Background	489

36.1	Background		
	36.1.1	Acupuncture and meridian	
		theory	489
	36.1.2	Physical properties of meridians	
		and acupoints	489
	36.1.3	Microsystems	490
	36.1.4	Acupuncture methods	490
36.2	Laser a	cupuncture	491
	36.2.1	Potential mechanisms of laser	
		acupuncture	491
	36.2.2	The deqi question	491

36.3	Acupu	ncture and the brain	492
	36.3.1	Functional magnetic resonance	
		imaging	492
36.4	Laser a	cupuncture and the brain	493
	36.4.1	Animal studies	493
	36.4.2	Laser acupuncture and	
		functional magnetic	
		resonance imaging	494
	36.4.3	The frequency question	494
	36.4.4	Laser acupuncture and	
		depression	494
	36.4.5	Laser acupuncture and cerebral	
		blood flow	495
	36.4.6	Laser acupuncture and brain	
		oscillations	496
	36.4.7	Laser acupuncture for stroke	
		and neurorehabilitation	496
	36.4.8	The wavelength question	496
36.5	Conclu	ision	497
Refe	ferences		

	Signature wounds of war: a case study		
	orge Louis Lindenfeld I George Rozelle		
37.	1 Introduction	503	
37.	2 RESET Therapy	506	
	3 Case study	508	
Ret	erences	514	
	inscatheter intracerebral otobiomodulation in		

degenerative brain disorders: clinical studies (Part 1) 515						
Ivan V. Maksimovich						
Introdu	uction	515				
Materia	als and methods	517				
38.2.1	Patient selection criteria	517				
38.2.2	Patient examination plan	517				
38.2.3	Treatment methods	519				
Results		520				
38.3.1	Test group	520				
38.3.2	Control group	524				
Discuse	sion	525				
Conclu	ision	526				
Conflic	526					
38.7 Funding						
References						
	enerat ical stu V. Maksi Introdu Materia 38.2.1 38.2.2 38.2.3 Results 38.3.1 38.3.2 Discuss Conclu Conflic Fundin	enerative brain disorders: ical studies (Part 1) V. Maksimovich Introduction Materials and methods 38.2.1 Patient selection criteria 38.2.2 Patient examination plan 38.2.3 Treatment methods Results 38.3.1 Test group 38.3.2 Control group Discussion Conclusion Conflict of interest Funding				

586

39.1	V. <i>Maksi</i> Introdu Materiz		
		uction	
39.2	Materia		529
		als and methods	531
	39.2.1	Patient selection criteria	531
	39.2.2	Patient screening plan	531
	39.2.3	Analysis of patients	531
	39.2.4	Selection of patients	532
		Methods of treating patients	533
	39.2.6	Evaluation of results	535
39.3	Results		535
	39.3.1	Test group 1—Patients with	
		intracerebral atherosclerosis	
		and chronic cerebrovascular	
		insufficiency	535
	39.3.2		
		intracerebral atherosclerosis and	
		previous ischemic stroke	536
	39.3.3		
		intracerebral atherosclerosis and	
		chronic cerebrovascular	
		insufficiency	538
	39.3.4	1 1	
		intracerebral atherosclerosis and	
		previous ischemic stroke	539
	39.3.5	Clinical results in the long-term	
		period	539
	Discuss		540
	Conclu		541
	lict of in	terest	542
Fund	ling rences		542 542

40. Russian low level laser therapy techniques for brain disorders 545

Sergey V. Moskvin and Andrey V. Kochetkov

40.1	Introduction	545
40.2	Protocol requirements of low level	
	laser therapy procedures in Russia,	
	low level laser therapy techniques	545
40.3	Intravenous laser blood illumination	547
40.4	Noninvasive laser blood illumination	549
40.5	The analysis of the literature on the use	
	of low level laser therapy in patients	
	with various cerebrovascular disorders	551
40.6	Indications	565

40.7 Contradic	tions	566
References		569

41. Laser treatment of central nervous system injuries: an update and 573 prospects L. Longo 41.1 Introduction 573 41.2 Clinical experience 574 41.3 Mechanisms of action 582 41.4 Appendix—Motor control and the Grimaldi maneuver 584 References

42.	Photobiomodulation treatment for brain disorders: posttraumatic stress disorder (PTSD) and dementia		
	Rona	ly Lamartiniere, Rhett Bergeron, Id Aung-Din, Matthew Bennett, am Stephan and Louis Banas	
	42.1	Introduction (clinical team)	589
	42.2	Original concussion case	590
	42.3	Posttraumatic stress disorder evaluation	591
	42.4	Case studies for posttraumatic stress	
		disorder	593
		42.4.1 Case studies for dementia	595
	42.5	Conclusion and future directions	597
	References		

43 .	What we don't know and what	
	the future holds	599

Michael R. Hamblin

43.1	Questions, or what we don't know				
43.2	What are the best diseases and				
	conditions to be treated?				
43.3	How important is light penetration				
	to the brain?				
43.4	What about systemic effects?				
43.5	What is the best way to deliver light?				
43.6	How important is pulsing?				
	43.6.1	Pulse parameters and light			
		sources	601		
	43.6.2	Types of pulsed light sources	602		
	43.6.3	Why could pulsing be important			
		in photobiomodulation?	602		

	43.6.4 Effect of pulsing photobiomodulation for			43.10.1	Transcranial magnetic brain stimulation	605
	the brain	603		43.10.2	Transcranial direct current	
43.7	How important is the location				stimulation	607
	on the head?	604		43.10.3	Low intensity pulsed	
43.8	How important is the biphasic dose				ultrasound	608
	response?	604	43.11	Could a	n invasive approach be	
43.9	What about cognitive enhancement			conside	red?	608
	and preconditioning?	605	43.12	What do	bes the future hold?	609
43.10	How does photobiomodulation		Refere	ences		609
	compare with other noninvasive					
	brain stimulation techniques?	605	Index			615

List of Contributors

- **Praveen R. Arany** Department of Oral Biology and Biomedical Engineering, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
- Jorge L. Arias INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain; Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Asturias, Spain
- Natalia Arias Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain
- Ronald Aung-Din Sarasota, FL, United States
- **Evan Austin** Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States
- Louis Banas Laser Innovations, Amherst, New York, United States
- Matthew Bennett Patterson, CA, United States
- Patrick Benson Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Rhett Bergeron Real Health Medical, Roswell, GA, United States
- Marvin H. Berman Quietmind Foundation, Elkins Park, PA, United States
- Yelena Bogdanova VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
- Marco Antonio Caldieraro Universidade Federal do Rio Grande do Sul, Department of Psychiatry and Forensic Medicine, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Porto Alegre, RS, Brazil
- **Victoria Campbell** RaVive Health, Inc., Operation Stand Tall Against TBI A Non-Profit Organization, Calhan, CO, United States, National Association of Social Workers, Washington, D.C., United States, American Psychological Association, Washington, D.C., United States, Campbell Method for Treating TBI
- James D. Carroll Thor Photomedicine Ltd., Chesham, United Kingdom
- Paolo Cassano Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Marucia Chacur Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy—ICB, University of São Paulo, São Paulo, Brazil
- Agnes S. Chan Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China
- Suk-tak Chan Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States

- Linda Chao Departments of Radiology & Biomedical Imaging and Psychiatry, University of California, San Francisco, CA, United States
- **Francisco José Cidral-Filho** Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhocça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
- **Thomas J. Covey** Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Luis De Taboada Chief Technology Officer, LiteCure LLC, New Castle, DE, United States
- Janis T. Eells Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- Nabil El Massri Department of Anatomy, University of Sydney, Sydney, NSW, Australia
- Andrea Fedoruk VA Boston Healthcare System, Boston, MA, United States
- Manuel Fierro Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States
- Saša R. Filipović Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Sherry Fox BioCare Systems, Inc., Parker, CO, United States, Colorado BioScience Association, Denver, CO, United States, National Association of Laser Therapy, Baltimore, MD, United States, LumiWave NIR Therapy Device, Operation Stand Tall Against TBI A Non-Profit Organization, Calhan, CO, United States
- Juan Díaz González Área de Tecnología Electrónica de la Universidad de Oviedo, Gijon, Spain; Grupo de Electrónica para la Innovación Industrial, Gijon, Spain
- Luke Gordon Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- **Rajiv Gupta** Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, United States
- Michael R. Hamblin Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States; Department of Dermatology, Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
- Catherine Hamilton Department of Anatomy, University of Sydney, Sydney, NSW, Australia
- David Hamilton Department of Anatomy, University of Sydney, Sydney, NSW, Australia
- **Theodore A. Henderson** Neuro-Laser Foundation, Centennial, CO, United States; The Synaptic Space, Centennial, CO, United States
- Michael D. Ho VA Boston Healthcare System, Boston, MA, United States
- Jason Huang Department of Neurosurgery, Baylor Scott & White Health, Dallas, TX, United States
- Ying-Ying Huang Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States; Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Jared Jagdeo Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States; Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
- Daniel M. Johnstone Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Linda Ramball Jones Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
- Ramanjot Kaur Department of Dermatology, University of California at Davis, Sacramento, CA, United States
- Ivo I. Kerppers Laboratory of Neuroanatomy and Neurophysiology, University of Centro-Oeste, Guarapuava, Brazil
- Boaz Kim Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia

- **Ji Yeon Kim** Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia; School of Medicine, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
- Jeffrey A. Knight VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States; National Center for PTSD—Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, United States
- Andrey V. Kochetkov Federal State-Funded Educational Institution of Continuing Professional Education "Institute of Advanced Training of FMBA of Russia", Moscow, Russia
- Ljubica M. Konstantinović Department of Rehabilitation, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Rehabilitation "Dr Miroslav Zotović", Belgrade, Serbia
- **Bang-Bon Koo** Bio-imaging Informatics Lab, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Maxine H. Krengel VA Boston Healthcare System, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Randy Lamartiniere Photo medicine Clinic, Baton Rouge, LA, United States
- Paul A. Lapchak Neurocore LLC, Pomona, CA, United States
- Tsz L. Lee Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
- Yong Li Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Huan Ling Liang Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Lew Lim Vielight Inc., Toronto, ON, Canada
- **George Louis Lindenfeld** RESET Therapy Professional Training Institute LLC, Sarasota, FL, United States; RESET Therapy Professional Training Institute LLC, Hendersonville, NC, United States
- Genane Loheswaran Vielight Inc., Toronto, ON, Canada
- L. Longo Institute for Laser Medicine, International Academy for Laser Medicine and Surgery, Florence, Italy
- Maria Gabriela Longo Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, United States
- J.A. Lyons College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- Javad Mahmoudi Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Ivan V. Maksimovich Clinic of Cardiovascular Diseases Named after Most Holy John Tobolsky, Moscow, Russia
- **Thomas Mang** Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
- **Paula I. Martin** VA Boston Healthcare System, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- **Daniel Fernandes Martins** Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhocça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
- **Daniel Oliveira Martins** Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy—ICB, University of São Paulo, São Paulo, Brazil
- Melissa Meynadasy Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- John Mitrofanis Department of Anatomy, University of Sydney, Sydney, NSW, Australia
- Larry D. Morries Neuro-Laser Foundation, Centennial, CO, United States

- Sergey V. Moskvin The Federal State-Financed Institution "O.K. Skobelkin State Scientific Center of Laser Medicine under the Federal Medical Biological Agency" of Russia, Moscow, Russia
- Margaret A. Naeser VA Boston Healthcare System, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Trent Nichols Quietmind Foundation, Elkins Park, PA, United States
- Frank Nicklason Department of Anatomy, University of Sydney, Sydney, NSW, Australia; Geriatric Medicine, Royal Hobart Hospital, Hobart, TAS, Australia
- Damir Nizamutdinov Department of Neurosurgery, Baylor Scott & White Health, Dallas, TX, United States
- Amir Oron Department of Orthopedic Surgery, Kaplan Medical Center, Rehovot, Israel
- Uri Oron Department of Zoology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- **Rodolfo Borges Parreira** Salgado Institute of Integrative Health, Londrina, Brazil; Residency Program in Integrative Physical Therapy at UNIFIL University, Londrina, Brazil
- Alberto Martín Pernía Área de Tecnología Electrónica de la Universidad de Oviedo, Gijon, Spain; Grupo de Electrónica para la Innovación Industrial, Gijon, Spain
- **Claudia Petrucco** Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Nathali Cordeiro Pinto Physiotherapy, Bright Photomedicine Ltd., São Paulo, Brazil
- Marcelo Victor Pires de Sousa Bright Photomedicine Ltd., São Paulo, Brazil
- **Eva-Maria Ratai** Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, United States
- Carlo Rondinoni Institute of Radiology (INRAD), Universidade de São Paulo, São Paulo, Brazil
- George Rozelle MindSpa Integrative Wellness Center, Sarasota, FL, United States
- Saeed Sadigh-Eteghad Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- **Farzad Salehpour** Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; ProNeuroLIGHT LLC, Phoenix, AZ, United States
- Afonso Shiguemi Inoue Salgado Salgado Institute of Integrative Health, Londrina, Brazil; Residency Program in Integrative Physical Therapy at UNIFIL University, Londrina, Brazil
- Anita Saltmarche Saltmarche Health & Associates Inc., Orangeville, ON, Canada
- **David W. Shucard** Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- William Stephan Buffalo, New York, United States
- Jonathan Stone Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Luis De Taboada Chief Technology Officer, LiteCure LLC, New Castle, DE, United States
- M.A. Tolentino College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- Lorelei Tucker Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- **Erica B. Wang** Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States
- Nicholas Alexander Wise Department of Physical Medicine and Rehabilitation, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States

- Margaret Wong-Riley Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Mei X. Wu Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States; Department of Dermatology, Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
- Luodan Yang Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Michael K. Yeung Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Elisabeth Mateus Yoshimura Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, University of São Paulo, São Paulo, Brazil
- **Quanguang Zhang** Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Reza Zomorrodi Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada

This page intentionally left blank

Preface

Photobiomodulation (PBM) also known as low-level laser (or light) therapy has been known for over 50 years (since 1967), but it is only relatively recently that it has begun to make the transition into the mainstream. PBM describes the use of red or near-infrared light at levels that do not produce undue heating of the tissue to produce beneficial effects on the human body. The introduction of light-emitting diodes (LEDs) has made this approach more accessible than the previously used laser sources, as LEDs are safer, cheaper, and can easily be used at home. Another factor that has led to PBM becoming more widely accepted is the growing understanding of the mechanisms of action at a molecular and cellular level. The lack of a clear mechanism of action was a deterrent to many biomedical scientists who maintained a healthy level of skepticism.

Among the wide range of tissues, organs, diseases, and conditions that can be beneficially affected by PBM, the subject of this book is the brain. The brain is probably the single human organ that engenders the most concern, interest, and expenditure in the 21st century. Brain disorders that cause widespread morbidity, mortality, and loss of quality of life can be divided into four broad categories. Traumatic brain disorders include stroke, traumatic brain injury (TBI), global ischemia, and perinatal difficulties. Neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, and a range of dementias. Psychiatric disorders include major depression, anxiety, addiction, and insomnia, among many others. Finally there are neurodevelopmental disorders (autism and ADHD) and the possibility of cognitive enhancement in healthy individuals. Many of these brain disorders are specifically addressed in the present volume.

The book is divided into three parts. The first part covers some basic considerations, dosimetry, and devices, and discusses the mechanisms of action at a cellular level and on the brain as a whole organ. The second part includes contributions from researchers who have carried out studies on a variety of animal models in their investigations of brain disorders, stroke, TBI, and Alzheimer's and Parkinson's diseases, to name a few. The third part concentrates on human studies, including controlled clinical trials, pilot trials, case series, and clinical experience. Disorders treated include TBI, stroke, Alzheimer's and Parkinson's diseases, depression, and others.

The book is expected to play a role in stimulating the further increase and acceptance of PBM for brain disorders, which has really started to take off in recent years. It will also act as a resource for researchers and physicians wishing to get a broad overview of the field and who are contemplating entering it themselves. The number of individuals considering obtaining a home-use PBM device is also steadily increasing and this book will act as an authoritative source of unbiased, well-researched, information, which is all the more necessary in the Internet age.